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Summary 
 
Mathematics is the backbone of modern science and a remarkably efficient source of 
new concepts and tools to understand the “reality" in which we participate. It plays a 
basic role in the great new theories of physics of the XXth century such as general 
relativity, and quantum mechanics.  
 
The nature and inner workings of this mental activity are often misunderstood or simply 
ignored even among scientists of other disciplines. They usually only make use of 
rudimentary mathematical tools that were already known in the XIXth century and miss 
completely the strength and depth of the constant evolution of our mathematical 
concepts and tools.  
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The author was asked to write a general introduction to Mathematics which ended up as 
a rather personal point of view rather than producing the usual endless litany “X did this 
and Y did that". The evolution of the concept of “space" in mathematics serves as a 
unifying theme starting from some of its historical roots and going towards more recent 
developments in which the author has been more or less directly involved.  
 
1. The Unity of Mathematics 
 
It might be tempting at first to view mathematics as the union of separate parts such as 
Geometry, Algebra, Analysis, Number theory etc... where the first is dominated by the 
understanding of the concept of “space", the second by the art of manipulating 
“symbols", the next by the access to “infinity" and the “continuum" etc...  
 
This however does not do justice to one of the most essential features of the 
mathematical world, namely that it is virtually impossible to isolate any of the above 
parts from the others without depriving them from their essence. In that way the corpus 
of mathematics does resemble a biological entity which can only survive as a whole and 
would perish if separated into disjoint pieces.  
 
The first embryo of mental picture of the mathematical world one can start from is that 
of a network of bewildering complexity between basic concepts. These basic concepts 
themselves are quite simple and are the result of a long process of “distillation" in the 
alembic of the human thought.  
 
Where a dictionary proceeds in a circular manner, defining a word by reference to 
another, the basic concepts of mathematics are infinitely closer to an “indecomposable 
element", a kind of “elementary particle" of thought with a minimal amount of 
ambiguity in their definition.  
 
This is so for instance for the natural numbers where the number 3 stands for that 
quality which is common to all sets with three elements. That means sets which become 
empty exactly after we remove one of its elements, then remove another and then 
remove another. In that way it becomes independent of the symbol 3 which is just a 
useful device to encode the number.  
 
Whereas the letters we use to encode numbers are dependent of the sociological and 
historical accidents that are behind the evolution of any language, the mathematical 
concept of number and even the specificity of a particular number such as 17 are totally 
independent of these accidents.  
 
The “purity" of this simplest mathematical concept has been used by Hans Freudenthal 
to design a language for cosmic communication which he called “Lincos".  
 
The scientific life of mathematicians can be pictured as a trip inside the geography of 
the “mathematical reality" which they unveil gradually in their own private mental 
frame.  
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It often begins by an act of rebellion with respect to the existing dogmatic description of 
that reality that one will find in existing books. The young “would be mathematicians" 
realize in their own mind that their perception of the mathematical world captures some 
features which do not quite fit with the existing dogma. This first act is often due in 
most cases to ignorance but it allows one to free oneself from the reverence to authority 
by relying on one’s intuition provided it is backed up by actual proofs. Once 
mathematicians get to really know, in an original and “personal" manner, a small part of 
the mathematical world, as esoteric as it can look at first (my starting point was 
localization of roots of polynomials), their trip can really start. It is of course vital all 
along not to break the “fil d’arianne" which allows to constantly keep a fresh eye on 
whatever one will encounter along the way, and also to go back to the source if one 
feels lost at times...  
 
It is also vital to always keep moving. The risk otherwise is to confine oneself in a 
relatively small area of extreme technical specialization, thus shrinking one’s perception 
of the mathematical world and of its bewildering diversity.  
 
The really fundamental point in that respect is that while so many mathematicians have 
been spending their entire scientific life exploring that world they all agree on its 
contours and on its connexity: whatever the origin of one’s itinerary, one day or another 
if one walks long enough, one is bound to reach a well known town i.e. for instance to 
meet elliptic functions, modular forms, zeta functions. “All roads lead to Rome" and the 
mathematical world is “connected".  
 
In other words there is just “one" mathematical world, whose exploration is the task of 
all mathematicians and they are all in the same boat somehow.  
 
Moreover exactly as the existence of the external material reality seems undeniable but 
is in fact only justified by the coherence and consensus of our perceptions, the existence 
of the mathematical reality stems from its coherence and from the consensus of the 
findings of mathematicians. The fact that proofs are a necessary ingredient of a 
mathematical theory implies a much more reliable form of “consensus" than in many 
other intellectual or scientific disciplines. It has so far been strong enough to avoid the 
formation of large gatherings of researchers around some “religious like" scientific 
dogma imposed with sociological imperialism.  
 
Most mathematicians adopt a pragmatic attitude and see themselves as the explorers of 
this “mathematical world" whose existence they don’t have any wish to question, and 
whose structure they uncover by a mixture of intuition, not so foreign from “poetical 
desire"(as emphasized by the French poet Paul Valery), and of a great deal of rationality 
requiring intense periods of concentration.  
 
Each generation builds a “mental picture" of its own understanding of this world and 
constructs more and more penetrating mental tools to explore previously hidden aspects 
of that reality.  
 
Where things get really interesting is when unexpected bridges emerge between parts of 
the mathematical world that were previously believed to be very far remote from each 
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other in the natural mental picture that a generation had elaborated. At that point one 
gets the feeling that a sudden wind has blown out the fog that was hiding parts of a 
beautiful landscape.  
 
We shall see at the end of this chapter one recent instance of such a bridge. Before 
doing that we will take the concept of “space" as a guideline to take the reader through a 
guided tour leading to the edge of the actual evolution of this concept both in algebraic 
geometry and in noncommutative geometry. We shall also review some of the 
“fundamental" tools that are at our disposal nowadays such as “positivity", 
“cohomology", “calculus", “Abelian categories" and most of all “symmetries" which 
will be a recurrent theme in the three different parts of this text.   
 
It is clearly impossible to give a “panorama" of the whole of mathematics in a 
reasonable amount of write up. But it is perfectly possible, by choosing a precise theme, 
to show the frontier of certain fundamental concepts which play a central role in 
mathematics and are still actively evolving.  
 
The concept of “space" is sufficiently versatile to be an ideal theme to display this 
active evolution and we shall confront the mathematical concept of space with physics 
and more precisely with what Quantum Field Theory teaches us and try to explain 
several of the open questions and recent findings in this area.  
 
2. The Concept of Space 
 
The mental pictures of geometry are easy to create by exploiting the visual areas of the 
brain. It would be naive however to believe that the concept of “space" i.e. the stage 
where the geometrical shapes develop, is a straightforward one. In fact as we shall see 
below this concept of “space" is still undergoing a drastic evolution.  
 
The Cartesian frame allows one to encode a point of the Euclidean plane (or space) by 
two (or three) real numbers xμ ∈ . This irruption of “numbers" in geometry appears at 
first as an act of violence undergone by geometry thought of as a synthetic mental 
construct.  
 
This “act of violence" inaugurates the duality between geometry and algebra, between 
the eye of the geometer and the computations of the algebraists, which run in time 
contrasting with the immediate perception of the visual intuition.  
 
Far from being a sterile opposition, this duality becomes extremely fecund when 
geometry and algebra become allies to explore unknown lands as in the new algebraic 
geometry of the second half of the twentieth century or as in noncommutative geometry, 
two existing frontiers for the notion of space.  
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Figure 1: Perspective 
 

2.1. Projective Geometry 
 
Let us first briefly describe projective geometry a telling example of the above duality 
between geometry and algebra.  
 
In the middle of the XVIIth century, G. Desargues, trying to give a mathematical 
foundation to the methods of perspective used by painters and architects founded real 
projective geometry. The real projective plane of Desargues is the set 2 ( )P  of lines 

through the origin in three space 3 . This adds to the usual points of the plane a “line at 
infinity" which gives a perfect formulation and support for the empirical techniques of 
perspective.  
 
In fact Desargues’s theorem (Figure 2) can be viewed as the base for the axiomatization 
of projective geometry.  
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Figure 2:  Desargues’s Theorem : Let jP  and jQ , {1 2 3}j∈ , ,  be points such that the 

three lines ( )j jP Q,  meet. Then the three points ( ) ( )j k l k lD P P Q Q:= , ∩ ,  are on the 
same line. 

This theorem is a consequence of the four extremely simple axioms which define 
projective geometry, but it requires for its proof that the dimension of the geometry be 
strictly larger than two.  
 
These axioms express the properties of the relation “ P L∈ " i.e. the point P  belongs to 
the line L , they are:  
• Existence and uniqueness of the straight line containing two distinct points.  
• Two lines defined by four points located on two meeting lines actually meet in one 

point.  
• Every line contains at least three points.  
• There exists a finite set of points that generate the whole geometry by iterating the 

operation passing from two points to all points of the line they span.  
 
In dimension 2n = , Desargues’s theorem is no longer a consequence of the above 
axioms and one has to add it to the above four axioms. The Desarguian geometries of 
dimension n  are exactly the projective spaces ( )nP K  of a (not necessarily 
commutative) field K .  
 
They are in this way in perfect duality with the key concept of algebra— that of field.  
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What is a field? It is a set of “numbers" that one can add, multiply and in which any 
non-zero element has an inverse so that all familiar rules are valid (except possibly the 
commutativity xy y x=  of the product). One basic example is given by the field  of 
rational numbers but there are many others such as the field 2F  with two elements or 
the field  of complex numbers. The field H  of quaternions of Hamilton is a beautiful 
example of non-commutative field.  
 
Complex projective geometry i.e. that of ( )nP  took its definitive form in “La 
Géométrie" of Monge in 1795. The presence of complex points on the side of the real 
ones simplifies considerably the overall picture and gives a rare harmony to the general 
theory by the simplicity and generality of the results. For instance all circles of the plane 
pass through the “cyclic points" a pair of points (introduced by Poncelet) located on the 
line at infinity and having complex coordinates. Thus as two arbitrary conics any pair of 
circles actually meet in four points, a statement clearly false in the real plane.  
 
The need for introducing and using complex numbers even to settle problems whose 
formulation is purely “real" had already appeared in the XVIth century for the 
resolution of the third degree equation. Indeed even when the three roots of such an 
equation are real the conceptual form of these roots in terms of radicals necessarily 
passes through complex numbers. (cf. Chapters 11 to 23 in Cardano’s book of 1545 Ars 
magna sive de regulis algebraicis).  
 
2.2. The Angel of Geometry and the Devil of Algebra 
 
The duality  
 
Geometry Algebra⏐   (1) 

 
already present in the above discussion of projective geometry allows us, when it is 
viewed as a mutual enhancement, to translate back and forth from geometry to algebra 
and obtain statements that would be hard to guess if one would stay confined to one of 
the two domains. This is best illustrated by a very simple example.  
 
The geometric result, due to Frank Morley, deals with planar geometry and is one of the 
few results about the geometry of triangles that was apparently unknown to Greek 
mathematicians. You start with an arbitrary triangle ABC  and trisect each angle, then 
you consider the intersection of consecutive trisectors, and obtain another triangle αβγ  
(Fig.3). Now Morley’s theorem, which he found around 1899, says that whichever 
triangle ABC you start from, the triangle αβγ  is always equilateral.  
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Figure 3:  Morley’s Theorem : The triangle αβγ  obtained from the intersection of 
consecutive trisectors of an arbitrary triangle ABC  is always equilateral. 

 
Here now is an algebraic “transcription" of this result. We start with an arbitrary 
commutative field K  and take three “affine" transformations of K . These are maps g  
from K  to K  of the form ( )g x xλ μ= + , where 0λ ≠ . Given such a transformation 
the value of Kλ ∈  is unique and noted ( )gδ . For g G∈ , ( )g x xλ μ= +  not a 
translation, i.e. 1λ ≠  one lets fix( )g α=  be the unique fixed point ( )g α α=  of g . 
These maps form a group ( )G K  (cf. Section 2.4) called the “affine group" and the 
algebraic counterpart of Morley’s theorem reads as follows  
 
Let f g h G, , ∈  be such that fg gh hf, ,  and fgh  are not translations and let 

( )j fghδ= . The following two conditions are equivalent,  

a) 3 3 3 1f g h = .  

b) 3 1j =  and 2 0j jα β γ+ + =  where fix ( )fgα = , fix ( )ghβ = , fix ( )hfγ = .   
 
This is a sufficiently general statement now, involving an arbitrary field K  and its proof 
is a simple “verification", which is a good test of the elementary skills in “algebra".  
 
It remains to show how it implies Morley’s result. But the fundamental property of 
“flatness" of Euclidean geometry, namely  
 
a b c π+ + =   (2) 
 
where a b c, ,  are the angles of a triangle ( )A B C, ,  is best captured algebraically by the 
equality  

1F G H =  
 
in the affine group ( )G  of the field K =  of complex numbers, where F  is the 
rotation of center A  and angle 2a  and similarly for G  and H . Thus if we let f  be the 
rotation of center A  and angle 2 3a/  and similarly for g  and h  we get the condition 

3 3 3 1f g h = .  
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The above equivalence thus shows that 2 0j jα β γ+ + = , where α , β , γ , are the 
fixed points of fg , gh  et hf  and where ( )j fghδ=  is a non-trivial cubic root of unity. 

The relation 2 0j jα β γ+ + =  is a well-known characterization of equilateral triangles 

(it means 2jα β
γ β
−
− = − , so that one passes from the vector βγ  to βα  by a rotation of 

angle 3π/ ).  
 
Finally it is easy to check that the fixed point α , ( ( ))f g α α=  is the intersection of the 
trisectors from A  and B  closest to the side AB . Indeed the rotation g  moves it to its 
symmetric relative to AB , and f  puts it back in place. Thus we proved that the triangle 
( )α β γ, ,  is equilateral. In fact we also get for free 18  equilateral triangles obtained by 

picking other solutions of 3f F=  etc...  
 
This is typical of the power of the duality between on the one hand the visual perception 
(where the geometrical facts can be sort of obvious) and on the other hand the algebraic 
understanding. Then, provided one can write things in algebraic terms, one enhances 
their power and makes them applicable in totally different circumstances. For instance 
the above theorem holds for a finite field, it holds for instance for the field 4F  which 
has cubic roots of unity.... So somehow, passing from the geometrical intuition to the 
algebraic formulation allows one to increase the power of the original “obvious" fact, a 
bit like language can enhance the strength of perception, in using the “right words".  
 
2.3. Non-Euclidean Geometry 
 
The discovery of Non-Euclidean geometry at the beginning of the XIXth century frees 
the geometric concepts whose framework opens up in two different directions.  
• The first opening is intimately related to the notion of symmetry and to the theory of 

Lie groups.  
• The second is the birth of the geometry of curved spaces of Gauss and Riemann, 

which was to play a crucial role soon afterwards in the elaboration of general 
relativity by Einstein.  

 
A particularly simple model of non-Euclidean geometry is the Klein model. The points 
of the geometry are those points of the plane which are located inside a fixed ellipse E  
(cf. Fig. 4). The lines of the geometry are the intersections of ordinary Euclidean lines 
with the inside of the ellipse.  
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Figure 4:  Klein model  
 
The fifth postulate of Euclid on ‘flatness" i.e. on the sum of the angles of a triangle (2) 
can be reformulated as the uniqueness of the line parallel (i.e. not intersecting) to a 
given line D  passing through a point I D∉ . In this form this postulate is thus 
obviously violated in the Klein model since through a point such as I  pass several lines 
such as L PQ=  and L RS′ =  which do not intersect D .  
 
It is however not enough to give the points and the lines of the geometry to determine it 
in full. One needs in fact also to specify the relations of “congruence" between two 
segments (as well as between angles) AB  and CD . The congruence of segments means 
that they have the same “length" and the latter is specified in the Klein model by  
 
length( ) log (cross ratio( ))AB A B b a= , ; ,   (3) 
 
where the cross-ratio of four points jP  on the same line with coordinates js  is by 
definition  

1 3 2 4
1 2 3 4

2 3 1 4

( )( )
cross ratio( )

( )( )
s s s s

P P P P
s s s s
− −

, ; , =
− −

  (4) 

 
Non-Euclidean geometry was discovered at the beginning of the XIXth century by 
Lobachevski and Bolyai, after many efforts by great mathematicians such as Legendre 
to show that the fifth Euclid’s axiom was unnecessary. Gauss discovered it 
independently and did not make his discovery public, but by developing the idea of 
“intrinsic curvature" he was already ways ahead anyway.  
 
All of Euclid’s axioms are fulfilled by this geometry (These Euclid’s axioms are notably 
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more complicated than those of projective geometry mentioned above.) except for the 
fifth one. It is striking to see, looking back, the fecundity of the question of the 
independence of the fifth axiom, a question which at first could have been hastily 
discarded as a kind of mental perversion in trying to eliminate one of the axioms in a 
long list that would not even look any shorter once done.  
 
What time has shown is that far from just being an esoteric counterexample Non-
Euclidean geometry is of a rare richness and fecundity. By breaking the traditional 
framework it generated two conceptual openings which we alluded to above and that 
will be discussed below, starting from the S. Lie approach.  
 
2.4. Symmetries 
 
One way to define the congruence of segments in the above Klein model, without 
referring to “length", i.e. to formula (3), is to use the natural symmetry group G  of the 
geometry given by the projective transformations T  of the plane that preserve the 
ellipse E . Then by definition, two segments AB  and CD  are congruent if and only if 
there exists such a transformation T G∈  with  
 

( )T A C= , ( )T B D= .  
 
The set of these transformations forms a group i.e. one can compose such 
transformations and obtain another one, i.e. one has a “law of composition"  
 
( )S T S T G S T G, → ∈ , ∀ , ∈ ,   (5) 
 
of elements of G  in which multiple products are defined independently of the 
parenthesis, i.e.  
 
( ) ( ))S T U S T U=   (6) 
 
a condition known as “associativity", while the identity transformation id  fulfills  
 

id idS S S= =   (7) 
 
and every element S  of the group admits an inverse, uniquely determined by  

1 1 idS S S S− −= =   (8) 
 
Group theory really took off with the work of Abel and Galois on the resolution of 
polynomial equations (cf. Section 3.6). In that case the groups involved are finite groups 
i.e. finite sets G  endowed with a law of composition fulfilling the above axioms. 
Exactly as an integer can be prime i.e. fail to have non-trivial divisors a finite group can 
be “simple" i.e. fail to map surjectively to a smaller non-trivial group while respecting 
the composition rule.  
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Figure 5:  Dodecahedron and Icosahedron  
 
The classification of all finite simple groups is one of the great achievements of XXth 
century mathematics.  
 
The group of symmetries of the above Klein geometry is not finite since specifying one 
of these geometric transformations involves in fact choosing three continuous 
parameters. It falls under the theory of S. Lie which was in fact a direct continuation of 
the ideas formulated by Galois.  
 
These ideas of Sophus Lie were reformulated in the “Erlangen program" of Félix Klein 
and successfully developed by Elie Cartan whose classification of Lie groups is another 
great success of XXth century mathematics. Through the work of Chevalley on 
algebraic groups the theory of Lie groups played a key role in the classification of finite 
simple groups.  
 
- 
- 
- 
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an abstract framework for Dirac operators, yielding a Hilbert space realization of the covariant first-order 
differential calculi, where all differentials are bounded operators.]  

[16]  S. MacLane, I. Moerdijk, Sheaves in Geometry and Logic, Springer Verlag (1992). [This book is a 
very detailed introduction to topos theory, aimed at readers with relatively little background in category 
theory. Recognizing the difficulty of understanding abstract machinery when it is presented without 
adequate motivation, the authors introduce the main concept in a gradually increasing generality. The 
book, through its detailed discussions of points, through its many centrally important examples, and 
through its generally more friendly character will be a great help in the learning of the subject.]  

[17]  J. Martinet, J.P. Ramis, Elementary acceleration and multisummability, I, Ann. Inst. Henri Poincaré, 
Vol.54 (1991) 331–401. [This is a long survey paper devoted to a detailed examination of formal 
solutions of a class of first order differential operators and their representation as products involving so-
called multisummable operators.]  

[18]  J. Milnor, D. Stasheff, Characteristic classes, Ann. of Math. Stud. , Princeton University Press, 
Princeton, N.J. (1974). [This is the fundamental textbook on characteristic classes.]  

[19]  M.A. Rieffel, Morita equivalence for C∗ -algebras and W ∗ -algebras, J. Pure Appl. Algebra 5 

(1974), 51-96. [This is a basic paper on Morita equivalence of C∗ - and W ∗ -algebras which is widely 
used in theory of operator algebras.]  

[20]  B. Riemann, Mathematical Werke, Dover, New York (1953). [This is a collected mathematical 
works of Riemann, in which one finds his famous “Habilitationsvortrag”.]  

[21]  I.M. Singer, Future extensions of index theory and elliptic operators, Ann. of Math. Studies 70 
(1971), 171-185. [This paper explains the widely known index theory for operators in a manifold.]  

[22]  M. Takesaki, Theory of operator algebras I, II, III, Springer-Verlag, Berlin, (vol.I, 2002; vol.II,III 
2003). [This is one of standard textbooks on operator algebras, where the structure and classification 
theory of von Neumann algebras are treated in detail.]  
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